comparative cognition
Latest
Roots of Analogy
Can nonhuman animals perceive the relation-between-relations? This intriguing question has been studied over the last 40 years; nonetheless, the extent to which nonhuman species can do so remains controversial. Here, I review empirical evidence suggesting that pigeons, parrots, crows, and baboons join humans in reliably acquiring and transferring relational matching-to-sample (RMTS). Many theorists consider that RMTS captures the essence of analogy, because basic to analogy is appreciating the ‘relation between relations.’ Factors affecting RMTS performance include: prior training experience, the entropy of the sample stimulus, and whether the items that serve as sample stimuli can also serve as choice stimuli.
Do Capuchin Monkeys, Chimpanzees and Children form Overhypotheses from Minimal Input? A Hierarchical Bayesian Modelling Approach
Abstract concepts are a powerful tool to store information efficiently and to make wide-ranging predictions in new situations based on sparse data. Whereas looking-time studies point towards an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often show a failure to detect abstract concepts like same and different until the late preschool years. Similarly, non-human animals have difficulties solving those tasks and often succeed only after long training regimes. Given the huge influence of small task modifications, there is an ongoing debate about the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning abilities. Here, we applied the concept of “overhypotheses” which is well known in the infant and cognitive modeling literature to study the capabilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design. In a series of studies, participants themselves sampled reward items from multiple containers or witnessed the sampling process. Only when they detected the abstract pattern governing the reward distributions within and across containers, they could optimally guide their behavior and maximize the reward outcome in a novel test situation. We compared each species’ performance to the predictions of a probabilistic hierarchical Bayesian model capable of forming overhypotheses at a first and second level of abstraction and adapted to their species-specific reward preferences.
comparative cognition coverage
2 items