Latest

SeminarNeuroscienceRecording

Introducing dendritic computations to SNNs with Dendrify

Michalis Pagkalos
IMBB FORTH
Sep 7, 2022

Current SNNs studies frequently ignore dendrites, the thin membranous extensions of biological neurons that receive and preprocess nearly all synaptic inputs in the brain. However, decades of experimental and theoretical research suggest that dendrites possess compelling computational capabilities that greatly influence neuronal and circuit functions. Notably, standard point-neuron networks cannot adequately capture most hallmark dendritic properties. Meanwhile, biophysically detailed neuron models are impractical for large-network simulations due to their complexity, and high computational cost. For this reason, we introduce Dendrify, a new theoretical framework combined with an open-source Python package (compatible with Brian2) that facilitates the development of bioinspired SNNs. Dendrify, through simple commands, can generate reduced compartmental neuron models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions to network-level functions while paving the way for developing more realistic neuromorphic systems.

neuronal models coverage

2 items

Seminar2
Domain spotlight

Explore how neuronal models research is advancing inside Neuro.

Visit domain