optic lobe
Latest
Sensory cognition
This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.
Target detection in the natural world
Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons that have a limited bandwidth to encode almost impossibly large input ranges. Importantly, natural scenes are not random, and peripheral visual systems have therefore evolved to reduce the predictable redundancy. The vertebrate visual cortex is also optimally tuned to the spatial statistics of natural scenes, but much less is known about how the insect brain responds to these. We are redressing this deficiency using several techniques. Olga Dyakova uses exquisite image manipulation to give natural images unnatural image statistics, or vice versa. Marissa Holden then uses these images as stimuli in electrophysiological recordings of neurons in the fly optic lobes, to see how the brain codes for the statistics typically encountered in natural scenes, and Olga Dyakova measures the behavioral optomotor response on our trackball set-up.
Australian Bogong moths use a true stellar compass for long-distance navigation at night
Each spring, billions of Bogong moths escape hot conditions in different regions of southeast Australia by migrating over 1000 km to a limited number of cool caves in the Australian Alps, historically used for aestivating over the summer. At the beginning of autumn the same individuals make a return migration to their breeding grounds to reproduce and die. To steer migration Bogong moths sense the Earth’s magnetic field and correlate its directional information with visual cues. In this presentation, we will show that a critically important visual cue is the distribution of starlight within the austral night sky. By tethering spring and autumn migratory moths in a flight simulator, we found that under natural dorsally-projected night skies, and in a nulled magnetic field (disabling the magnetic sense), moths flew in their seasonally appropriate migratory directions, turning in the opposite direction when the night sky was rotated 180°. Visual interneurons in the moth’s optic lobe and central brain responded vigorously to identical sky rotations. Migrating Bogong moths thus use the starry night sky as a true compass to distinguish geographic cardinal directions, the first invertebrate known to do so. These stellar cues are likely reinforced by the Earth’s magnetic field to create a robust compass mechanism for long-distance nocturnal navigation.
optic lobe coverage
3 items