spatial navigation
Latest
Dr. Demian Battaglia/Dr. Romain Goutagny
The postdoc position is under the joint co-mentoring of Dr. Demian Battaglia and Dr. Romain Goutagny at the University of Strasbourg, France, in the Functional System's Dynamics team – FunSy. The position starts as soon as possible and can last up to two years. The job offer is funded by the French ANR 'HippoComp' project, which focuses on the complexity of hippocampal oscillations and the hypothesis that such complexity can serve as a computational resource. The team performs electrophysiological recordings in the hippocampus and cortex during spatial navigation and memory tasks in mice (wild type and mutant developing various neuropathologies) and have access to vast data through local and international cooperation. They use a large spectrum of computational tools ranging from time-series and network analyses, information theory, and machine-learning to multi-scale computational modeling.
Peter C. Petersen
The project addresses the generation and functions of theta oscillations in spatial navigation using systems neuroscience and population-level approaches. The project involves performing electrophysiological recordings from freely moving animals using chronically implanted high-density Neuropixels silicon probes and applying optogenetics for single-cell tagging, and behavioral manipulations.
Brain circuits for spatial navigation
In this webinar on spatial navigation circuits, three researchers—Ann Hermundstad, Ila Fiete, and Barbara Webb—discussed how diverse species solve navigation problems using specialized yet evolutionarily conserved brain structures. Hermundstad illustrated the fruit fly’s central complex, focusing on how hardwired circuit motifs (e.g., sinusoidal steering curves) enable rapid, flexible learning of goal-directed navigation. This framework combines internal heading representations with modifiable goal signals, leveraging activity-dependent plasticity to adapt to new environments. Fiete explored the mammalian head-direction system, demonstrating how population recordings reveal a one-dimensional ring attractor underlying continuous integration of angular velocity. She showed that key theoretical predictions—low-dimensional manifold structure, isometry, uniform stability—are experimentally validated, underscoring parallels to insect circuits. Finally, Webb described honeybee navigation, featuring path integration, vector memories, route optimization, and the famous waggle dance. She proposed that allocentric velocity signals and vector manipulation within the central complex can encode and transmit distances and directions, enabling both sophisticated foraging and inter-bee communication via dance-based cues.
A recurrent network model of planning predicts hippocampal replay and human behavior
When interacting with complex environments, humans can rapidly adapt their behavior to changes in task or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible futures before acting. For such planning to be rational, the benefits of planning to future behavior must at least compensate for the time spent thinking. Here we capture these features of human behavior by developing a neural network model where not only actions, but also planning, are controlled by prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences drawn from its own policy, which we refer to as `rollouts'. Our results demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides a new theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by -- and in turn adaptively affect -- prefrontal dynamics.
A recurrent network model of planning explains hippocampal replay and human behavior
When interacting with complex environments, humans can rapidly adapt their behavior to changes in task or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible futures before acting. For such planning to be rational, the benefits of planning to future behavior must at least compensate for the time spent thinking. Here we capture these features of human behavior by developing a neural network model where not only actions, but also planning, are controlled by prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences drawn from its own policy, which we refer to as 'rollouts'. Our results demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides a new theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by - and in turn adaptively affect - prefrontal dynamics.
Minute-scale periodic sequences in medial entorhinal cortex
The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience. While location is known to be encoded by a plethora of spatially tuned cell types in this brain region, little is known about how the activity of entorhinal cells is tied together over time. Among the brain’s most powerful mechanisms for neural coordination are network oscillations, which dynamically synchronize neural activity across circuit elements. In MEC, theta and gamma oscillations provide temporal structure to the neural population activity at subsecond time scales. It remains an open question, however, whether similarly coordination occurs in MEC at behavioural time scales, in the second-to-minute regime. In this talk I will show that MEC activity can be organized into a minute-scale oscillation that entrains nearly the entire cell population, with periods ranging from 10 to 100 seconds. Throughout this ultraslow oscillation, neural activity progresses in periodic and stereotyped sequences. The oscillation sometimes advances uninterruptedly for tens of minutes, transcending epochs of locomotion and immobility. Similar oscillatory sequences were not observed in neighboring parasubiculum or in visual cortex. The ultraslow periodic sequences in MEC may have the potential to couple its neurons and circuits across extended time scales and to serve as a scaffold for processes that unfold at behavioural time scales.
The medial prefrontal cortex replays generalized sequences
Whilst spatial navigation is a function ascribed to the hippocampus, flexibly adapting to a change in rule depends on the medial prefrontal cortex (mPFC). Single-units were recorded from the hippocampus and mPFC of rats shifting between a spatially- and cue-guided rule on a plus-maze. The mPFC population coded for the relative position between start and goal arm. During awake immobility periods, the mPFC replayed organized sequences of generalized positions which positively correlated with rule-switching performance. Conversely, hippocampal replay negatively correlated with performance and occurred independently of mPFC replay. Sequential replay in the hippocampus and mPFC may thus serve different functions.
Intrinsic Geometry of a Combinatorial Sensory Neural Code for Birdsong
Understanding the nature of neural representation is a central challenge of neuroscience. One common approach to this challenge is to compute receptive fields by correlating neural activity with external variables drawn from sensory signals. But these receptive fields are only meaningful to the experimenter, not the organism, because only the experimenter has access to both the neural activity and knowledge of the external variables. To understand neural representation more directly, recent methodological advances have sought to capture the intrinsic geometry of sensory driven neural responses without external reference. To date, this approach has largely been restricted to low-dimensional stimuli as in spatial navigation. In this talk, I will discuss recent work from my lab examining the intrinsic geometry of sensory representations in a model vocal communication system, songbirds. From the assumption that sensory systems capture invariant relationships among stimulus features, we conceptualized the space of natural birdsongs to lie on the surface of an n-dimensional hypersphere. We computed composite receptive field models for large populations of simultaneously recorded single neurons in the auditory forebrain and show that solutions to these models define convex regions of response probability in the spherical stimulus space. We then define a combinatorial code over the set of receptive fields, realized in the moment-to-moment spiking and non-spiking patterns across the population, and show that this code can be used to reconstruct high-fidelity spectrographic representations of natural songs from evoked neural responses. Notably, we find that topological relationships among combinatorial codewords directly mirror acoustic relationships among songs in the spherical stimulus space. That is, the time-varying pattern of co-activity across the neural population expresses an intrinsic representational geometry that mirrors the natural, extrinsic stimulus space. Combinatorial patterns across this intrinsic space directly represent complex vocal communication signals, do not require computation of receptive fields, and are in a form, spike time coincidences, amenable to biophysical mechanisms of neural information propagation.
Learning predictive maps in the brain for spatial navigation
The predictive map hypothesis provides a promising framework to model representations in the hippocampal formation. I will introduce a tractable implementation of a predictive map called the successor representation (SR), before presenting data showing that rats and humans display SR-like navigational choices on a novel open-field maze. Next, I will show how such a predictive map could be implemented using spatial representations found in the hippocampal formation, before finally presenting how such learning might be well approximated by phenomena that exist in the spatial memory system - namely spike-timing dependent plasticity and theta phase precession.
Forming latent codes for decision-making and spatial navigation: a generative modeling perspective
Spatial uncertainty provides a unifying account of navigation behavior and grid field deformations
To localize ourselves in an environment for spatial navigation, we rely on vision and self-motion inputs, which only provide noisy and partial information. It is unknown how the resulting uncertainty affects navigation behavior and neural representations. Here we show that spatial uncertainty underlies key effects of environmental geometry on navigation behavior and grid field deformations. We develop an ideal observer model, which continually updates probabilistic beliefs about its allocentric location by optimally combining noisy egocentric visual and self-motion inputs via Bayesian filtering. This model directly yields predictions for navigation behavior and also predicts neural responses under population coding of location uncertainty. We simulate this model numerically under manipulations of a major source of uncertainty, environmental geometry, and support our simulations by analytic derivations for its most salient qualitative features. We show that our model correctly predicts a wide range of experimentally observed effects of the environmental geometry and its change on homing response distribution and grid field deformation. Thus, our model provides a unifying, normative account for the dependence of homing behavior and grid fields on environmental geometry, and identifies the unavoidable uncertainty in navigation as a key factor underlying these diverse phenomena.
NMC4 Short Talk: Neural Representation: Bridging Neuroscience and Philosophy
We understand the brain in representational terms. E.g., we understand spatial navigation by appealing to the spatial properties that hippocampal cells represent, and the operations hippocampal circuits perform on those representations (Moser et al., 2008). Philosophers have been concerned with the nature of representation, and recently neuroscientists entered the debate, focusing specifically on neural representations. (Baker & Lansdell, n.d.; Egan, 2019; Piccinini & Shagrir, 2014; Poldrack, 2020; Shagrir, 2001). We want to know what representations are, how to discover them in the brain, and why they matter so much for our understanding of the brain. Those questions are framed in a traditional philosophical way: we start with explanations that use representational notions, and to more deeply understand those explanations we ask, what are representations — what is the definition of representation? What is it for some bit of neural activity to be a representation? I argue that there is an alternative, and much more fruitful, approach. Rather than asking what representations are, we should ask what the use of representational *notions* allows us to do in neuroscience — what thinking in representational terms helps scientists do or explain. I argue that this framing offers more fruitful ground for interdisciplinary collaboration by distinguishing the philosophical concerns that have a place in neuroscience from those that don’t (namely the definitional or metaphysical questions about representation). And I argue for a particular view of representational notions: they allow us to impose the structure of one domain onto another as a model of its causal structue. So, e.g., thinking about the hippocampus as representing spatial properties is a way of taking structures in those spatial properties, and projecting those structures (and algorithms that would implement them) them onto the brain as models of its causal structure.
Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behaviour
The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behaviour has not yet been demonstrated. Using an ‘all-optical’ combination of simultaneous two-photon calcium imaging and two-photon holographically targeted optogenetics, we identified and selectively activated place cells that encoded behaviourally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behaviour of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory. Time permitting, I will also describe new experiments aimed at understanding the fundamental encoding mechanism that supports episodic memory, focussing on the role of hippocampal sequences across multiple timescales and behaviours.
Phase precession in the human hippocampus and entorhinal cortex
Knowing where we are, where we have been, and where we are going is critical to many behaviors, including navigation and memory. One potential neuronal mechanism underlying this ability is phase precession, in which spatially tuned neurons represent sequences of positions by activating at progressively earlier phases of local network theta oscillations. Based on studies in rodents, researchers have hypothesized that phase precession may be a general neural pattern for representing sequential events for learning and memory. By recording human single-neuron activity during spatial navigation, we show that spatially tuned neurons in the human hippocampus and entorhinal cortex exhibit phase precession. Furthermore, beyond the neural representation of locations, we show evidence for phase precession related to specific goal states. Our find- ings thus extend theta phase precession to humans and suggest that this phenomenon has a broad func- tional role for the neural representation of both spatial and non-spatial information.
Learning predictive maps in the brain for spatial navigation
Multisensory self in spatial navigation
Using extra-hippocampal cognitive maps for goal-directed spatial navigation
Goal-directed navigation requires precise estimates of spatial relationships between current position and future goal, as well as planning of an associated route or action. While neurons in the hippocampal formation can represent the animal’s position and nearby trajectories, their role in determining the animal’s destination or action has been questioned. We thus hypothesize that brain regions outside the hippocampal formation may play complementary roles in navigation, particularly for guiding goal-directed behaviours based on the brain’s internal cognitive map. In this seminar, I will first describe a subpopulation of neurons in the retrosplenial cortex (RSC) that increase their firing when the animal approaches environmental boundaries, such as walls or edges. This boundary coding is independent of direct visual or tactile sensation but instead depends on inputs from the medial entorhinal cortex (MEC) that contains spatial tuning cells, such as grid cells or border cells. However, unlike MEC border cells, we found that RSC border cells encode environmental boundaries in a self-centred egocentric coordinate frame, which may allow an animal for efficient avoidance from approaching walls or edges during navigation. I will then discuss whether the brain can possess a precise estimate of remote target location during active environmental exploration. Such a spatial code has not been described in the hippocampal formation. However, we found that neurons in the rat orbitofrontal cortex (OFC) form spatial representations that persistently point to the animal’s subsequent goal destination throughout navigation. This destination coding emerges before navigation onset without direct sensory access to a distal goal, and are maintained via destination-specific neural ensemble dynamics. These findings together suggest key roles for extra-hippocampal regions in spatial navigation, enabling animals to choose appropriate actions toward a desired destination by avoiding possible dangers.
Neural mechanisms of navigation behavior
The regions of the insect brain devoted to spatial navigation are beautifully orderly, with a remarkably precise pattern of synaptic connections. Thus, we can learn much about the neural mechanisms of spatial navigation by targeting identifiable neurons in these networks for in vivo patch clamp recording and calcium imaging. Our lab has recently discovered that the "compass system" in the Drosophila brain is anchored to not only visual landmarks, but also the prevailing wind direction. Moreover, we found that the compass system can re-learn the relationship between these external sensory cues and internal self-motion cues, via rapid associative synaptic plasticity. Postsynaptic to compass neurons, we found neurons that conjunctively encode heading direction and body-centric translational velocity. We then showed how this representation of travel velocity is transformed from body- to world-centric coordinates at the subsequent layer of the network, two synapses downstream from compass neurons. By integrating this world-centric vector-velocity representation over time, it should be possible for the brain to form a stored representation of the body's path through the environment.
Abstraction and Inference in the Prefrontal Hippocampal Circuitry
The cellular representations and computations that allow rodents to navigate in space have been described with beautiful precision. In this talk, I will show that some of these same computations can be found in humans doing tasks that appear very different from spatial navigation. I will describe some theory that allows us to think about spatial and non-spatial problems in the same framework, and I will try to use this theory to give a new perspective on the beautiful spatial computations that inspired it. The overall goal of this work is to find a framework where we can talk about complicated non-spatial inference problems with the same precision that is only currently available in space.
Cortical networks for flexible decisions during spatial navigation
My lab seeks to understand how the mammalian brain performs the computations that underlie cognitive functions, including decision-making, short-term memory, and spatial navigation, at the level of the building blocks of the nervous system, cell types and neural populations organized into circuits. We have developed methods to measure, manipulate, and analyze neural circuits across various spatial and temporal scales, including technology for virtual reality, optical imaging, optogenetics, intracellular electrophysiology, molecular sensors, and computational modeling. I will present recent work that uses large scale calcium imaging to reveal the functional organization of the mouse posterior cortex for flexible decision-making during spatial navigation in virtual reality. I will also discuss work that uses optogenetics and calcium imaging during a variety of decision-making tasks to highlight how cognitive experience and context greatly alter the cortical circuits necessary for navigation decisions.
On cognitive maps and reinforcement learning in large-scale animal behaviour
Bats are extreme aviators and amazing navigators. Many bat species nightly com-mute dozens of kilometres in search of food, and some bat species annually migrate over thousands of kilometres. Studying bats in their natural environment has al-ways been extremely challenging because of their small size (mostly <50 gr) and agile nature. We have recently developed novel miniature technology allowing us to GPS-tag small bats, thus opening a new window to document their behaviour in the wild. We have used this technology to track fruit-bats pups over 5 months from birth to adulthood. Following the bats’ full movement history allowed us to show that they use novel short-cuts which are typical for cognitive-map based naviga-tion. In a second study, we examined how nectar-feeding bats make foraging deci-sions under competition. We show that by relying on a simple reinforcement learn-ing strategy, the bats can divide the resource between them without aggression or communication. Together, these results demonstrate the power of the large scale natural approach for studying animal behavior.
A thalamic reticular circuit for head direction cell tuning and spatial navigation
Multiple maps for navigation
Over the last several decades, the tractable response properties of parahippocampal neurons have provided a new access key to understanding the cognitive process of self-localization: the ability to know where you are currently located in space. Defined by functionally discrete response properties, neurons in the medial entorhinal cortex and hippocampus are proposed to provide the basis for an internal neural map of space, which enables animals to perform path-integration based spatial navigation and supports the formation of spatial memories. My lab focuses on understanding the mechanisms that generate this neural map of space and how this map is used to support behavior. In this talk, I’ll discuss how learning and experience shapes our internal neural maps of space to guide behavior.
To & From: Hippobellum & LINCs
The hippocampus is a well-studied structure, important for spatial navigation, learning, and memory. The hippocampus, however, still contains secrets and does not work in a vacuum. LINCs are a novel form of long-range inhibitory neuron in the hippocampus, which may be important for coordinating activity between the hippocampus and downstream structures. The cerebellum, while classically viewed as a motor structure, is being increasingly recognized for its impact on cognitive domains. Recent work has demonstrated that the cerebellum can influence the hippocampus, including place cells.
Revealing the neural basis of human memory with direct recordings of place and grid cells and traveling waves
The ability to remember spatial environments is critical for everyday life. In this talk, I will discuss my lab’s findings on how the human brain supports spatial memory and navigation based on our experiments with direct brain recordings from neurosurgical patients performing virtual-reality spatial memory tasks. I will show that humans have a network of neurons that represent where we are located and trying to go. This network includes some cell types that are similar to those seen in animals, such as place and grid cells, as well as others that have not been seen before in animals, such as anchor and spatial-target cells. I also will explore the role of network oscillations in human memory, where humans again show several distinctive patterns compared to animals. Whereas rodents generally show a hippocampal oscillation at ~8Hz, humans have two separate hippocampal oscillations, at low and high frequencies, which support memory and navigation, respectively. Finally, I will show that neural oscillations in humans are traveling waves, propagating across the cortex, to coordinate the timing of neuronal activity across regions, which is another property not seen in animals. A theme from this work is that in terms of navigation and memory the human brain has novel characteristics compared with animals, which helps explain our rich behavioural abilities and has implications for treating disease and neurological disorders.
The role of feedback in dynamic inference for spatial navigation under uncertainty
Bernstein Conference 2024
Spatial navigation under uncertainty
Bernstein Conference 2024
The role of the entorhinal cortex in reward-guided spatial navigation
COSYNE 2023
Causal control of spatial navigation by a hippocampal brain-machine interface induces rapid reconfiguration of cognitive maps
FENS Forum 2024
Computational model-based analysis of spatial navigation strategies under stress and uncertainty using place, distance, and border cells
FENS Forum 2024
Degeneration of the ascending vestibular pathway accounts for spatial navigation deficits in aged mice
FENS Forum 2024
Modeling the neural mechanisms underlying reversal learning in spatial navigation
FENS Forum 2024
A neural network model that learns to encode and retrieve memories for spatial navigation
FENS Forum 2024
spatial navigation coverage
33 items