Latest

SeminarNeuroscienceRecording

Optimal initialization strategies for Deep Spiking Neural Networks

Julia Gygax
Friedrich Miescher Institute for Biomedical Research (FMI)
Nov 3, 2021

Recent advances in neuromorphic hardware and Surrogate Gradient (SG) learning highlight the potential of Spiking Neural Networks (SNNs) for energy-efficient signal processing and learning. Like in Artificial Neural Networks (ANNs), training performance in SNNs strongly depends on the initialization of synaptic and neuronal parameters. While there are established methods of initializing deep ANNs for high performance, effective strategies for optimal SNN initialization are lacking. Here, we address this gap and propose flexible data-dependent initialization strategies for SNNs.

SeminarNeuroscienceRecording

StereoSpike: Depth Learning with a Spiking Neural Network

Ulysse Rancon
University of Bordeaux
Nov 2, 2021

Depth estimation is an important computer vision task, useful in particular for navigation in autonomous vehicles, or for object manipulation in robotics. Here we solved it using an end-to-end neuromorphic approach, combining two event-based cameras and a Spiking Neural Network (SNN) with a slightly modified U-Net-like encoder-decoder architecture, that we named StereoSpike. More specifically, we used the Multi Vehicle Stereo Event Camera Dataset (MVSEC). It provides a depth ground-truth, which was used to train StereoSpike in a supervised manner, using surrogate gradient descent. We propose a novel readout paradigm to obtain a dense analog prediction –the depth of each pixel– from the spikes of the decoder. We demonstrate that this architecture generalizes very well, even better than its non-spiking counterparts, leading to state-of-the-art test accuracy. To the best of our knowledge, it is the first time that such a large-scale regression problem is solved by a fully spiking network. Finally, we show that low firing rates (<10%) can be obtained via regularization, with a minimal cost in accuracy. This means that StereoSpike could be implemented efficiently on neuromorphic chips, opening the door for low power real time embedded systems.

SeminarNeuroscienceRecording

Back-propagation in spiking neural networks

Timothee Masquelier
Centre national de la recherche scientifique, CNRS | Toulouse
Sep 1, 2020

Back-propagation is a powerful supervised learning algorithm in artificial neural networks, because it solves the credit assignment problem (essentially: what should the hidden layers do?). This algorithm has led to the deep learning revolution. But unfortunately, back-propagation cannot be used directly in spiking neural networks (SNN). Indeed, it requires differentiable activation functions, whereas spikes are all-or-none events which cause discontinuities. Here we present two strategies to overcome this problem. The first one is to use a so-called 'surrogate gradient', that is to approximate the derivative of the threshold function with the derivative of a sigmoid. We will present some applications of this method for time series processing (audio, internet traffic, EEG). The second one concerns a specific class of SNNs, which process static inputs using latency coding with at most one spike per neuron. Using approximations, we derived a latency-based back-propagation rule for this sort of networks, called S4NN, and applied it to image classification.

surrogate gradient coverage

3 items

Seminar3
Domain spotlight

Explore how surrogate gradient research is advancing inside Neuro.

Visit domain