vmPFC
Latest
Dissecting the neural circuits underlying prefrontal regulation of reward and threat responsivity in a primate
Gaining insight into the overlapping neural circuits that regulate positive and negative emotion is an important step towards understanding the heterogeneity in the aetiology of anxiety and depression and developing new treatment targets. Determining the core contributions of the functionally heterogenous prefrontal cortex to these circuits is especially illuminating given its marked dysregulation in affective disorders. This presentation will review a series of studies in a new world monkey, the common marmoset, employing pathway-specific chemogenetics, neuroimaging, neuropharmacology and behavioural and cardiovascular analysis to dissect out prefrontal involvement in the regulation of both positive and negative emotion. Highlights will include the profound shift of sensitivity away from reward and towards threat induced by localised activations within distinct regions of vmPFC, namely areas 25 and 14 as well as the opposing contributions of this region, compared to orbitofrontal and dorsolateral prefrontal cortex, in the overall responsivity to threat. Ongoing follow-up studies are identifying the distinct downstream pathways that mediate some of these effects as well as their differential sensitivity to rapidly acting anti-depressants.
A Network for Computing Value Equilibrium in the Human Medial Prefrontal Corte
Humans and other animals make decisions in order to satisfy their goals. However, it remains unknown how neural circuits compute which of multiple possible goals should be pursued (e.g., when balancing hunger and thirst) and how to combine these signals with estimates of available reward alternatives. Here, humans undergoing fMRI accumulated two distinct assets over a sequence of trials. Financial outcomes depended on the minimum cumulate of either asset, creating a need to maintain “value equilibrium” by redressing any imbalance among the assets. Blood-oxygen-level-dependent (BOLD) signals in the rostral anterior cingulate cortex (rACC) tracked the level of imbalance among goals, whereas the ventromedial prefrontal cortex (vmPFC) signaled the level of redress incurred by a choice rather than the overall amount received. These results suggest that a network of medial frontal brain regions compute a value signal that maintains value equilibrium among internal goals.
vmPFC coverage
2 items