World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
University of California, San Diego
Showing your local timezone
Schedule
Wednesday, July 14, 2021
5:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Analogical Minds
Seminar location
No geocoded details are available for this content yet.
Children's emerging ability to acquire and apply relational same-different concepts is often cited as a defining feature of human cognition, providing the foundation for abstract thought. Yet, young learners often struggle to ignore irrelevant surface features to attend to structural similarity instead. I will argue that young children have--and retain--genuine relational concepts from a young age, but tend to neglect abstract similarity due to a learned bias to attend to objects and their properties. Critically, this account predicts that differences in the structure of children's environmental input should lead to differences in the type of hypotheses they privilege and apply. I will review empirical support for this proposal that has (1) evaluated the robustness of early competence in relational reasoning, (2) identified cross-cultural differences in relational and object bias, and (3) provided evidence that contextual factors play a causal role in relational reasoning. Together, these studies suggest that the development of abstract thought may be more malleable and context-sensitive than initially believed.
Caren Walker
Dr
University of California, San Diego
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe