Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
Birla Institute of Technology & Science
Showing your local timezone
Schedule
Friday, October 2, 2020
5:00 PM Europe/Vienna
Recording provided by the organiser.
Domain
NeuroscienceHost
The Neurotheory Forum
Duration
70 minutes
Neuroscience is witnessing extraordinary progress in experimental techniques, especially at the neural circuit level. These advances are largely aimed at enabling us to understand precisely how neural circuit computations mechanistically cause behavior. Establishing this type of causal understanding will require multiple perturbational (e.g optogenetic) experiments. It has been unclear exactly how many such experiments are needed and how this number scales with the size of the nervous system in question. Here, using techniques from Theoretical Computer Science, we prove that establishing the most extensive notions of understanding need exponentially-many experiments in the number of neurons, in many cases, unless a widely-posited hypothesis about computation is false (i.e. unless P = NP). Furthermore, using data and estimates, we demonstrate that the feasible experimental regime is typically one where the number of experiments performable scales sub-linearly in the number of neurons in the nervous system. This remarkable gulf between the worst-case and the feasible suggests an algorithmic barrier to such an understanding. Determining which notions of understanding are algorithmically tractable to establish in what contexts, thus, becomes an important new direction for investigation. TL; DR: Non-existence of tractable algorithms for neural circuit interrogation could pose a barrier to comprehensively understanding how neural circuits cause behavior. Preprint: https://biorxiv.org/content/10.1101/639724v1/…
Venkat Ramaswamy
Prof
Birla Institute of Technology & Science
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow