Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Mediterranean Neurobiology Institute, Faculté de Médecine, Aix-Marseille Université, Marseille, France
Showing your local timezone
Schedule
Wednesday, March 17, 2021
1:15 PM Europe/Zurich
Domain
NeuroscienceHost
NeuroLeman Network
Duration
70 minutes
The developmental journey of cortical interneurons encounters several activity-dependent milestones. During the early postnatal period in developing mice, GABAergic neurons are transient preferential recipients of thalamic inputs and undergo activity-dependent migration arrest, wiring and programmed cell-death. But cortical GABAergic neurons are also specified by very early developmental programs. For example, the earliest born GABAergic neurons develop into hub cells coordinating spontaneous activity in hippocampal slices. Despite their importance for the emergence of sensory experience, their role in coordinating network dynamics, and the role of activity in their integration into cortical networks, the collective in vivo dynamics of GABAergic neurons during the neonatal postnatal period remain unknown. Here, I will present data related to the coordinated activity between GABAergic cells of the mouse barrel cortex and hippocampus in non-anesthetized pups using the recent development of all optical methods to record and manipulate neuronal activity in vivo. I will show that the functional structure of developing GABAergic circuits is remarkably patterned, with segregated assemblies of prospective parvalbumin neurons and highly connected hub cells, both shaped by sensory-dependent processes.
Rosa Cossart
Mediterranean Neurobiology Institute, Faculté de Médecine, Aix-Marseille Université, Marseille, France
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow