Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr
University of Tokyo
Showing your local timezone
Schedule
Saturday, October 2, 2021
6:00 AM Australia/Sydney
Recording provided by the organiser.
Domain
NeuroscienceHost
Sydney Systems Neuroscience and Complexity SNAC
Duration
60 minutes
Where in the brain consciousness resides remains unclear. It has been suggested that the subnetworks supporting consciousness should be bidirectionally (recurrently) connected because both feed-forward and feedback processing are necessary for conscious experience. Accordingly, evaluating which subnetworks are bidirectionally connected and the strength of these connections would likely aid the identification of regions essential to consciousness. Here, we propose a method for hierarchically decomposing a network into cores with different strengths of bidirectional connection, as a means of revealing the structure of the complex brain network. We applied the method to a whole-brain mouse connectome. We found that cores with strong bidirectional connections consisted of regions presumably essential to consciousness (e.g., the isocortical and thalamic regions, and claustrum) and did not include regions presumably irrelevant to consciousness (e.g., cerebellum). Contrarily, we could not find such correspondence between cores and consciousness when we applied other simple methods which ignored bidirectionality. These findings suggest that our method provides a novel insight into the relation between bidirectional brain network structures and consciousness. Our recent preprint on this work is here: https://doi.org/10.1101/2021.07.12.452022.
Jun Kitazono
Dr
University of Tokyo
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow