Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Associate Professor
University of California, San Diego
Showing your local timezone
Schedule
Tuesday, October 27, 2020
1:45 AM America/Chicago
Domain
Physics of LifeHost
Center for Theoretical Biophysics Seminar
Duration
70 minutes
The ability of the brain to encode and store information depends on the plastic nature of the individual synapses. The increase and decrease in synaptic strength, mediated through the structural plasticity of the spine, are important for learning, memory, and cognitive function. Dendritic spines are small structures that contain the synapse. They come in a variety of shapes (stubby, thin, or mushroom-shaped) and a wide range of sizes that protrude from the dendrite. These spines are the regions where the postsynaptic biochemical machinery responds to the neurotransmitters. Spines are dynamic structures, changing in size, shape, and number during development and aging. While spines and synapses have inspired neuromorphic engineering, the biophysical events underlying synaptic and structural plasticity of single spines remain poorly understood. Our current focus is on understanding the biophysical events underlying structural plasticity. I will discuss recent efforts from my group — first, a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation and a series of spatial models to study the role of spine geometry and organelle location within the spine for calcium and cyclic AMP signaling. Second, I will discuss how mechanics of membrane-cytoskeleton interactions can give insight into spine shape region. And I will conclude with some new efforts in using reconstructions from electron microscopy to inform computational domains. I will conclude with how geometry and mechanics plays an important role in our understanding of fundamental biological phenomena and some general ideas on bio-inspired engineering.
Padmini Rangamani
Associate Professor
University of California, San Diego
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow
neuro