Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Professor
Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
Showing your local timezone
Schedule
Wednesday, March 16, 2022
3:00 PM Europe/London
Recording provided by the organiser.
Domain
NeuroscienceHost
British Association for Cognitive Neuroscience BACN
Duration
60 minutes
Executive control processes and flexible behaviors rely on the integrity of, and dynamic interactions between, large-scale functional brain networks. The right insular cortex is a critical component of a salience/midcingulo-insular network that is thought to mediate interactions between brain networks involved in externally oriented (central executive/lateral frontoparietal network) and internally oriented (default mode/medial frontoparietal network) processes. How these brain systems reconfigure with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. I will describe studies examining how brain network dynamics support flexible behaviors in typical and atypical development, presenting evidence suggesting a unique role for the dorsal anterior insular from studies of meta-analytic connectivity modeling, dynamic functional connectivity, and structural connectivity. These findings from adults, typically developing children, and children with autism suggest that structural and functional maturation of insular pathways is a critical component of the process by which human brain networks mature to support complex, flexible cognitive processes throughout the lifespan.
Lucina Uddin
Professor
Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow