Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Building System Models of Brain-Like Visual Intelligence with Brain-Score

Martin Schrimpf

Dr

MIT

Schedule
Wednesday, October 5, 2022

Showing your local timezone

Schedule

Wednesday, October 5, 2022

5:30 PM Europe/Berlin

Watch recording
Host: SNUFA

Access Seminar

Meeting Password

$Em4HF

Use this password when joining the live session

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

SNUFA

Duration

30 minutes

Abstract

Research in the brain and cognitive sciences attempts to uncover the neural mechanisms underlying intelligent behavior in domains such as vision. Due to the complexities of brain processing, studies necessarily had to start with a narrow scope of experimental investigation and computational modeling. I argue that it is time for our field to take the next step: build system models that capture a range of visual intelligence behaviors along with the underlying neural mechanisms. To make progress on system models, we propose integrative benchmarking – integrating experimental results from many laboratories into suites of benchmarks that guide and constrain those models at multiple stages and scales. We show-case this approach by developing Brain-Score benchmark suites for neural (spike rates) and behavioral experiments in the primate visual ventral stream. By systematically evaluating a wide variety of model candidates, we not only identify models beginning to match a range of brain data (~50% explained variance), but also discover that models’ brain scores are predicted by their object categorization performance (up to 70% ImageNet accuracy). Using the integrative benchmarks, we develop improved state-of-the-art system models that more closely match shallow recurrent neuroanatomy and early visual processing to predict primate temporal processing and become more robust, and require fewer supervised synaptic updates. Taken together, these integrative benchmarks and system models are first steps to modeling the complexities of brain processing in an entire domain of intelligence.

Topics

Brain-Scorecomputational modelingcomputational neurosciencedeep learningintegrative benchmarkingneural recordingsobject categorizationprimate visionshallow recurrent neuroanatomyspike ratesvisual intelligence

About the Speaker

Martin Schrimpf

Dr

MIT

Contact & Resources

@martin_schrimpf

Follow on Twitter/X

twitter.com/martin_schrimpf

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →