Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
SeminarPast EventNeuroscience

Causal coupling between neural activity, metabolism, and behavior across the Drosophila brain

Kevin Mann

Dr.

Stanford School of Medicine

Schedule
Monday, June 7, 2021

Showing your local timezone

Schedule

Monday, June 7, 2021

4:00 PM Europe/Lisbon

Host: Brain-Body Interactions

Access Seminar

Event Information

Domain

Neuroscience

Original Event

View source

Host

Brain-Body Interactions

Duration

70 minutes

Abstract

Coordinated activity across networks of neurons is a hallmark of both resting and active behavioral states in many species, including worms, flies, fish, mice and humans. These global patterns alter energy metabolism in the brain over seconds to hours, making oxygen consumption and glucose uptake widely used proxies of neural activity. However, whether changes in neural activity are causally related to changes in metabolic flux in intact circuits on the sub-second timescales associated with behavior, is unclear. Moreover, it is unclear whether differences between rest and action are associated with spatiotemporally structured changes in neuronal energy metabolism at the subcellular level. My work combines two-photon microscopy across the fruit fly brain with sensors that allow simultaneous measurements of neural activity and metabolic flux, across both resting and active behavioral states. It demonstrates that neural activity drives changes in metabolic flux, creating a tight coupling between these signals that can be measured across large-scale brain networks. Further, using local optogenetic perturbation, I show that even transient increases in neural activity result in rapid and persistent increases in cytosolic ATP, suggesting that neuronal metabolism predictively allocates resources to meet the energy demands of future neural activity. Finally, these studies reveal that the initiation of even minimal behavioral movements causes large-scale changes in the pattern of neural activity and energy metabolism, revealing unexpectedly widespread engagement of the central brain.

Topics

ATPbehaviourbehavioural statesdrosophilaglucose uptakemetabolismneural activityoptogenetic perturbationoxygen consumptiontwo-photon microscopy

About the Speaker

Kevin Mann

Dr.

Stanford School of Medicine

Contact & Resources

Personal Website

flyvisionlab.weebly.com

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →