Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
King’s College London
Showing your local timezone
Schedule
Wednesday, September 28, 2022
4:00 PM Europe/London
Domain
NeuroscienceHost
Imperial Centre for Neurotechnology
Duration
70 minutes
GABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS). Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. We have investigated the emergence and plasticity of axo-axonic synapses in layer 2/3 of the somatosensory cortex (S1) and found that ChCs follow what appear to be homeostatic rules when forming synapses with pyramidal neurons. We are currently implementing in vivo techniques to image the process of axo-axonic synapse formation during development and uncover the dynamics of synaptogenesis and pruning at the AIS. In addition, we are using an all-optical approach to both activate and measure the activity of chandelier cells and their postsynaptic partners in the primary visual cortex (V1) and somatosensory cortex (S1) in mice, also during development. We aim to provide a structural and functional description of the emergence and plasticity of a GABAergic synapse type in the cortex.
Juan Burrone
Prof
King’s College London
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow