Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
University of Pitsburgh
Showing your local timezone
Schedule
Friday, May 22, 2020
2:00 PM Europe/London
Recording provided by the organiser.
Domain
NeuroscienceHost
The Neurotheory Forum
Duration
70 minutes
Inhibitory microcircuits play an important role regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration are gatekeepers for neural activity, synaptic plasticity and the formation of sensory representations. We have been investigating the synaptic plasticity mechanisms underlying the formation of ensembles in olfactory and orbitofrontal cortex. We have been focusing on the roles of three inhibitory neuron classes in gating excitatory synaptic plasticity in olfactory cortex- somatostatin (SST-INs), parvalbumin (PV-INs), and vasoactive intestinal polypeptide (VIP-INs) interneurons. Further, we are investigating the rules for inhibitory plasticity and a potential role in stabilizing ensembles in associative cortices. I will present new findings to support distinct roles for different interneuron classes in the gating and stabilization of ensemble representations of olfactory responses.
Ann-Marie Oswald
Prof
University of Pitsburgh
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow