Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
University of Warwick
Showing your local timezone
Schedule
Wednesday, May 18, 2022
1:00 AM America/New_York
Recording provided by the organiser.
Domain
Host
van Vreeswijk TNS
Duration
70 minutes
Synaptic transmission provides the basis for neuronal communication. When an action-potential propagates through the axonal arbour, it activates voltage-gated Ca2+ channels located in the vicinity of release-ready synaptic vesicles docked at the presynaptic active zone. Ca2+ ions enter the presynaptic terminal and activate the vesicular Ca2+ sensor, thereby triggering neurotransmitter release. This whole process occurs on a timescale of a few milliseconds. In addition to fast, synchronous release, which keeps pace with action potentials, many synapses also exhibit delayed asynchronous release that persists for tens to hundreds of milliseconds. In this talk I will demonstrate how experimentally constrained computational modelling of underlying biological processes can complement laboratory studies (using electrophysiology and imaging techniques) and provide insights into the mechanisms of synaptic transmission.
Yulia Timofeeva
University of Warwick
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow