Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr
Imperial College London
Showing your local timezone
Schedule
Wednesday, September 16, 2020
4:00 PM Europe/London
Recording provided by the organiser.
Domain
Physics of LifeHost
BioActive Fluids
Duration
70 minutes
The Smoluchowski equation has often been used as the starting point of many continuum models of active suspensions. However, its six-dimensional nature depending on time, space and orientation requires a huge computational cost, fundamentally limiting its use for large-scale problems, such as mixing and transport of active fluids in turbulent flows. Despite the singular nature in strain-dominant flows, the generalised Taylor dispersion (GTD) theory (Frankel & Brenner 1991, J. Fluid Mech. 230:147-181) has been understood to be one of the most promising ways to reduce the Smoluchowski equation into an advection-diffusion equation, the mean drift and diffusion tensor of which rely on ‘local’ flow information only. In this talk, we will introduce an exact transformation of the Smoluchowski equation into such an advection-diffusion equation requiring only local flow information. Based on this transformation, a new advection-diffusion equation will subsequently be proposed by taking an asymptotic analysis in the limit of small particle velocity. With several examples, it will be demonstrated that the new advection-diffusion model, non-singular in strain-dominant flows, outperforms the GTD theory.
Yongyun Hwang
Dr
Imperial College London
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow
neuro