Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
SeminarPast EventNeuroscience

Cortical population coding of consumption decisions

Donald B. Katz

Prof.

Brandeis University

Schedule
Tuesday, June 30, 2020

Showing your local timezone

Schedule

Tuesday, June 30, 2020

4:00 PM Europe/London

Host: Cortex Club

Access Seminar

Event Information

Domain

Neuroscience

Original Event

View source

Host

Cortex Club

Duration

70 minutes

Abstract

The moment that a tasty substance enters an animal’s mouth, the clock starts ticking. Taste information transduced on the tongue signals whether a potential food will nourish or poison, and the animal must therefore use this information quickly if it is to decide whether the food should be swallowed or expelled. The system tasked with computing this important decision is rife with cross-talk and feedback—circuitry that all but ensures dynamics and between-neuron coupling in neural responses to tastes. In fact, cortical taste responses, rather than simply reporting individual taste identities, do contain characterizable dynamics: taste-driven firing first reflects the substance’s presence on the tongue, and then broadly codes taste quality, and then shifts again to correlate with the taste’s current palatability—the basis of consumption decisions—all across the 1-1.5 seconds after taste administration. Ensemble analyses reveal the onset of palatability-related firing to be a sudden, nonlinear transition happening in many neurons simultaneously, such that it can be reliably detected in single trials. This transition faithfully predicts both the nature and timing of consumption behaviours, despite the huge trial-to-trial variability in both; furthermore, perturbations of this transition interfere with production of the behaviours. These results demonstrate the specific importance of ensemble dynamics in the generation of behaviour, and reveal the taste system to be akin to a range of other integrated sensorimotor systems.

Topics

consumption decisionscortical population codingensemble dynamicsfiring patternsneural responsespalatabilitypopulation codingsensorimotor systemstaste informationtaste quality

About the Speaker

Donald B. Katz

Prof.

Brandeis University

Contact & Resources

Personal Website

www.brandeis.edu/facultyguide/person.html

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →