Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr.
University of Pennsylvania
Showing your local timezone
Schedule
Sunday, May 8, 2022
5:00 PM America/Los_Angeles
Recording provided by the organiser.
Domain
Host
SLAAM by UC Merced
Duration
70 minutes
White matter microstructure underpins cognition and function in the human brain through the facilitation of neuronal communication, and the non-invasive characterization of this structure remains an elusive goal in the neuroscience community. Efforts to assess white matter microstructure are hampered by the sheer amount of information needed for characterization. Current techniques address this problem by representing white matter features with single scalars that are often not easy to interpret. Here, we address these issues by introducing tools from soft matter for the characterization of white matter microstructure. We investigate structure on a mesoscopic scale by analyzing its homogeneity and determining which regions of the brain are structurally homogeneous, or ``crystalline" in the context of materials science. We find that crystallinity is a reliable metric that varies across the brain along interpretable lines of anatomical difference. We also parcellate white matter into ``crystal grains," or contiguous sets of voxels of high structural similarity, and find overlap with other white matter parcellations. Our results provide new means of assessing white matter microstructure on multiple length scales, and open new avenues of future inquiry.
Erin Teich
Dr.
University of Pennsylvania
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow
neuro