Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
SeminarPast EventNeuroscience

Development and evolution of neuronal connectivity

Alain Chédotal

Vision Institute, Paris, France

Schedule
Wednesday, September 28, 2022

Showing your local timezone

Schedule

Wednesday, September 28, 2022

6:00 PM Europe/Zurich

Host: NeuroLeman Network

Access Seminar

Event Information

Domain

Neuroscience

Original Event

View source

Host

NeuroLeman Network

Duration

70 minutes

Abstract

In most animal species including humans, commissural axons connect neurons on the left and right side of the nervous system. In humans, abnormal axon midline crossing during development causes a whole range of neurological disorders ranging from congenital mirror movements, horizontal gaze palsy, scoliosis or binocular vision deficits. The mechanisms which guide axons across the CNS midline were thought to be evolutionary conserved but our recent results suggesting that they differ across vertebrates.  I will discuss the evolution of visual projection laterality during vertebrate evolution.  In most vertebrates, camera-style eyes contain retinal ganglion cell (RGC) neurons projecting to visual centers on both sides of the brain. However, in fish, RGCs are thought to only innervate the contralateral side. Using 3D imaging and tissue clearing we found that bilateral visual projections exist in non-teleost fishes. We also found that the developmental program specifying visual system laterality differs between fishes and mammals. We are currently using various strategies to discover genes controlling the development of visual projections. I will also present ongoing work using 3D imaging techniques to study the development of the visual system in human embryo.

Topics

3D imagingBMI SeminarCNS midlinecommissural axonscongenital disordersneuronal connectivityretinal ganglion cellstissue clearingvertebrate evolutionvisual projection

About the Speaker

Alain Chédotal

Vision Institute, Paris, France

Contact & Resources

@NeuroLeman

Follow on Twitter/X

twitter.com/NeuroLeman

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →