Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
University of California, Berkeley
Showing your local timezone
Schedule
Monday, January 23, 2023
3:00 PM Europe/London
Recording provided by the organiser.
Domain
NeuroscienceHost
Sussex Visions
Duration
70 minutes
To maintain a stable and clear image of the world, our eyes reflexively follow the direction in which a visual scene is moving. Such gaze stabilization mechanisms reduce image blur as we move in the environment. In non-primate mammals, this behavior is initiated by ON-type direction-selective ganglion cells (ON-DSGCs), which detect the direction of image motion and transmit signals to brainstem nuclei that drive compensatory eye movements. However, ON-DSGCs have not yet been functionally identified in primates, raising the possibility that the visual inputs that drive this behavior instead arise in the cortex. In this talk, I will present molecular, morphological and functional evidence for identification of an ON-DSGC in macaque retina. The presence of ON-DSGCs highlights the need to examine the contribution of subcortical retinal mechanisms to normal and aberrant gaze stabilization in the developing and mature visual system. More generally, our findings demonstrate the power of a multimodal approach to study sparsely represented primate RGC types.
Teresa Puthussery
Prof
University of California, Berkeley
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow