Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Assoc Prof
University of Utah, USA
Showing your local timezone
Schedule
Tuesday, March 23, 2021
1:00 AM America/New_York
Recording provided by the organiser.
Domain
NeuroscienceHost
Timing Research Forum
Duration
60 minutes
Over 60 years of research has established that medial temporal lobe structures, including the hippocampus and entorhinal cortex, are necessary for the formation of episodic memories (i.e. memories of specific personal events that occur in spatial and temporal context). While prior work to establish the neural mechanisms underlying episodic memory has largely focused on questions related spatial context, recently we have begun to investigate how these brain structures could be involved in encoding aspects of temporal context. In particular, we have focused on how medial entorhinal cortex, a structure well known for its role in spatial memory, may also be involved in encoding interval time. To answer this question we have developed an instrumental paradigm for head-fixed mice that requires both immobile interval timing and locomotion-dependent navigation behavior. By combining this behavioral paradigm with large-scale cellular resolution functional imaging and optogenetic-mediated inactivation, our results suggest that MEC is required for learning of interval timing behavior and that interval timing could be mediated through regular, sequential neural activity of a distinct subpopulation of neurons in MEC that encode elapsed time during periods of immobility (Heys and Dombeck, 2018; Heys et al, 2020; Issa et al., 2020). In this talk, I will discuss these findings and discuss our on-going work to investigate the principles underlying the role of medial temporal lobe structures in timing behavior and episodic memory.
Jim Heys
Assoc Prof
University of Utah, USA
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow