Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Do you hear what I see: Auditory motion processing in blind individuals

Ione Fine

University of Washington

Schedule
Thursday, October 7, 2021

Showing your local timezone

Schedule

Thursday, October 7, 2021

6:00 PM Europe/Berlin

Watch recording
Host: Multisensory Perception and Plasticity

Watch the seminar

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

Multisensory Perception and Plasticity

Duration

70 minutes

Abstract

Perception of object motion is fundamentally multisensory, yet little is known about similarities and differences in the computations that give rise to our experience across senses. Insight can be provided by examining auditory motion processing in early blind individuals. In those who become blind early in life, the ‘visual’ motion area hMT+ responds to auditory motion. Meanwhile, the planum temporale, associated with auditory motion in sighted individuals, shows reduced selectivity for auditory motion, suggesting competition between cortical areas for functional role. According to the metamodal hypothesis of cross-modal plasticity developed by Pascual-Leone, the recruitment of hMT+ is driven by it being a metamodal structure containing “operators that execute a given function or computation regardless of sensory input modality”. Thus, the metamodal hypothesis predicts that the computations underlying auditory motion processing in early blind individuals should be analogous to visual motion processing in sighted individuals - relying on non-separable spatiotemporal filters. Inconsistent with the metamodal hypothesis, evidence suggests that the computational algorithms underlying auditory motion processing in early blind individuals fail to undergo a qualitative shift as a result of cross-modal plasticity. Auditory motion filters, in both blind and sighted subjects, are separable in space and time, suggesting that the recruitment of hMT+ to extract motion information from auditory input includes a significant modification of its normal computational operations.

Topics

auditory motioncomputational algorithmscross modal plasticitycross-modal plasticityearly blindearly blindnesshMT+metamodal hypothesismotionplanum temporalesensory inputspatiotemporal filters

About the Speaker

Ione Fine

University of Washington

Contact & Resources

Personal Website

faculty.washington.edu/ionefine/

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →