Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr
University of Tokyo
Showing your local timezone
Schedule
Tuesday, June 29, 2021
2:40 AM Asia/Tokyo
Domain
NeuroscienceHost
IBRO-RIKEN CBS Summer Program
Duration
80 minutes
Transient changes in dopamine activity in response to reward and punishment have been known to regulate reward-related learning. However, the cellular basis that detects the transient dopamine signaling has long been unclear. Using two-photon microscopy and optogenetics, I have shown that transient increases and decreases of dopamine modulate plasticity of dopamine D1 and D2 receptor-expressing cells in the nucleus accumbens, respectively. At the behavioral level, I characterized that these D1 and D2 cells cooperatively tune learning by generalization and discrimination learning. Interestingly, disturbance of the dopamine signaling impaired D2 cell plasticity and discrimination learning, which was analogous to salience misattribution seen in subjects with schizophrenia.
Sho Yagishita
Dr
University of Tokyo
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow