Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
McCormick Lab, University of Oregon
Showing your local timezone
Schedule
Wednesday, June 30, 2021
7:00 PM Europe/Berlin
Recording provided by the organiser.
Domain
Host
WWNeuRise
Duration
35 minutes
The vagus nerve is a major pathway by which the brain and the body communicate. Electrical stimulation of the vagus nerve (VNS) is widely used as a therapeutic intervention for epilepsy and there is compelling evidence that it can enhance recovery following stroke. Our work demonstrates that VNS exerts a robust excitatory effect on the brain. First, we establish that VNS triggers an increase in arousal state as measured by behavioral state change. This behavioral state change is linked to an increase in excitatory activity within the cortex. We also show that cholinergic and noradrenergic neuromodulatory pathways are activated by VNS, providing a potential mechanism by which VNS may trigger cortical activation. Importantly, the effect of VNS on neuromodulation and cortical excitation persists in anesthetized mice, demonstrating that VNS-induced cortical activation cannot be fully explained by associated behavioral changes.
Lindsay Collins
McCormick Lab, University of Oregon
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow