Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr.
Stanford University
Showing your local timezone
Schedule
Thursday, August 12, 2021
7:00 PM America/Los_Angeles
Domain
NeuroscienceHost
IEEE Brain
Duration
70 minutes
We will highlight recent technological and methodological advances in deploying miniaturized technologies that can monitor the spatial electrophysiologic patterns of the visceral nervous system. As an example, we will discuss recent developments of thin, stretchable, wireless biosensor patches that can be embedded within routinely used medical adhesives for recording electrophysiologic patterns of the GI tract. We will also showcase recent developments in array signal processing that enable non-invasive tracking, and source localization, of the slow wave patterns associated with the GI tract. We will illustrate how such systems can also be used in tandem with novel miniaturized pacing devices to can enable closed-loop neuromodulation of the enteric nervous system. We will conclude with a summary of the knowns and unknowns in how multi-organ physiology research, technology miniaturization, and data science may create unique opportunities for the intersection of electrical engineering and neuroscience.
Todd Coleman
Dr.
Stanford University
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow