Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailablePhysics of Life

The Equation of State of a Tissue

Vikrant Yadav

Dr.

Yale University

Schedule
Monday, May 23, 2022

Showing your local timezone

Schedule

Sunday, May 22, 2022

5:00 PM America/Los_Angeles

Watch recording
Host: SLAAM by UC Merced

Access Seminar

Meeting Password

223642

Use this password when joining the live session

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Domain

Physics of Life

Original Event

View source

Host

SLAAM by UC Merced

Duration

70 minutes

Abstract

An equation of state is something you hear about in introductory thermodynamics, for example, the Ideal gas equation. The ideal gas equation relates the pressure, volume, and the number of particles of the gas, to its temperature, uniquely defining its state. This description is possible in physics when the system under investigation is in equilibrium or near equilibrium. In biology, a tissue is modeled as a fluid composed of cells. These cells are constantly interacting with each other through mechanical and chemical signaling, driving them far from equilibrium. Can an equation of state exist for such a messy interacting system? In this talk, I show that the presence of strong cell-cell interaction in tissues gives rise to a novel non-equilibrium, size-dependent surface tension, something unheard of for classical fluids. This surface tension, in turn, modifies the packing of cells inside the tissue generating a size-dependent density and pressure. Finally, we show that a combination of these non-equilibrium pressure and densities can yield an equation of state for biological tissues arbitrarily far from equilibrium. In the end, I discuss how this new paradigm of size-dependent biological properties gives rise to novel modes of cellular motion in tissues

Topics

biological propertiescell-cell interactioncellular motiondensityequation of statenon-equilibriumpressuresurface tensiontissue

About the Speaker

Vikrant Yadav

Dr.

Yale University

Contact & Resources

No additional contact information available

Related Seminars

Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
January 2026
Full calendar →