Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr.
Yale University
Showing your local timezone
Schedule
Sunday, May 22, 2022
5:00 PM America/Los_Angeles
Recording provided by the organiser.
Domain
Host
SLAAM by UC Merced
Duration
70 minutes
An equation of state is something you hear about in introductory thermodynamics, for example, the Ideal gas equation. The ideal gas equation relates the pressure, volume, and the number of particles of the gas, to its temperature, uniquely defining its state. This description is possible in physics when the system under investigation is in equilibrium or near equilibrium. In biology, a tissue is modeled as a fluid composed of cells. These cells are constantly interacting with each other through mechanical and chemical signaling, driving them far from equilibrium. Can an equation of state exist for such a messy interacting system? In this talk, I show that the presence of strong cell-cell interaction in tissues gives rise to a novel non-equilibrium, size-dependent surface tension, something unheard of for classical fluids. This surface tension, in turn, modifies the packing of cells inside the tissue generating a size-dependent density and pressure. Finally, we show that a combination of these non-equilibrium pressure and densities can yield an equation of state for biological tissues arbitrarily far from equilibrium. In the end, I discuss how this new paradigm of size-dependent biological properties gives rise to novel modes of cellular motion in tissues
Vikrant Yadav
Dr.
Yale University
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow
neuro