World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
University of Cincinnati
Showing your local timezone
Schedule
Sunday, April 25, 2021
5:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Sussex Visions
Seminar location
No geocoded details are available for this content yet.
During communication, alignment between signals and sensors can be critical. Signals are often best perceived from specific angles, and sensory systems can also exhibit strong directional biases. However, we know little about how animals establish and maintain such signaling alignment during communication. To investigate this, we characterized the spatial dynamics of visual courtship signal- ing in the jumping spider Habronattus pyrrithrix. The male performs forward-facing displays involving complex color and movement patterns, with distinct long- and short-range phases. The female views displays with 2 distinct eye types and can only perceive colors and fine patterns of male displays when they are presented in her frontal field of view. Whether and how courtship interactions pro- duce such alignment between male display and female field of view is unknown. We recorded relative positions and orientations of both actors throughout courtship and established the role of each sex in maintaining signaling alignment. Males always oriented their displays toward the female. However, when females were free to move, male displays were consistently aligned with female princi- pal eyes only during short-range courtship. When female position was fixed, signaling alignment consistently occurred during both phases, suggesting that female movement reduces communication efficacy. When female models were experimentally rotated to face away during courtship, males rarely repositioned themselves to re-align their display. However, males were more likely to present cer- tain display elements after females turned to face them. Thus, although signaling alignment is a function of both sexes, males appear to rely on female behavior for effective communication
Nathan Morehouse
Dr
University of Cincinnati
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe