Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Exact Coherent Structures Transition

Back to SeminarsBack
Seminar✓ Recording AvailablePhysics of Life

Exact coherent structures and transition to turbulence in a confined active nematic

Caleb Wagner

Dr.

University of Nebraska-Lincoln

Schedule
Sunday, February 27, 2022

Showing your local timezone

Schedule

Sunday, February 27, 2022

9:00 AM America/Los_Angeles

Watch recording
Host: SLAAM by UC Merced

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Format

Recorded Seminar

Recording

Available

Host

SLAAM by UC Merced

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

Active matter describes a class of systems that are maintained far from equilibrium by driving forces acting on the constituent particles. Here I will focus on confined active nematics, which exhibit especially rich flow behavior, ranging from structured patterns in space and time to disordered turbulent flows. To understand this behavior, I will take a deterministic dynamical systems approach, beginning with the hydrodynamic equations for the active nematic. This approach reveals that the infinite-dimensional phase space of all possible flow configurations is populated by Exact Coherent Structures (ECS), which are exact solutions of the hydrodynamic equations with distinct and regular spatiotemporal structure; examples include unstable equilibria, periodic orbits, and traveling waves. The ECS are connected by dynamical pathways called invariant manifolds. The main hypothesis in this approach is that turbulence corresponds to a trajectory meandering in the phase space, transitioning between ECS by traveling on the invariant manifolds. Similar approaches have been successful in characterizing high Reynolds number turbulence of passive fluids. Here, I will present the first systematic study of active nematic ECS and their invariant manifolds and discuss their role in characterizing the phenomenon of active turbulence.

Topics

active nematicscoherent structuresdeterministic dynamical systemsflow behaviourhydrodynamic equationsinvariant manifoldsphase spacespatiotemporal structureturbulence

About the Speaker

Caleb Wagner

Dr.

University of Nebraska-Lincoln

Contact & Resources

Personal Website

www.statisticalphysicist23.com

Related Seminars

Seminar42% match - Relevant

Towards open meta-research in neuroimaging

open source

When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. F

Dec 8, 2024
ORIGAMI - Neural data science - https://neurodatascience.github.io/
Seminar42% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar42% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights