Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
University of California, Los Angeles
Showing your local timezone
Schedule
Thursday, March 23, 2023
12:00 AM America/Chicago
Domain
NeuroscienceHost
Analogical Minds
Duration
90 minutes
Explicit similarity judgments tend to emphasize relational information more than do difference judgments. In this talk, I propose and test the hypothesis that this asymmetry arises because human reasoners represent the relation different as the negation of the relation same (i.e., as not-same). This proposal implies that processing difference is more cognitively demanding than processing similarity. Both for verbal comparisons between word pairs, and for visual comparisons between sets of geometric shapes, participants completed a triad task in which they selected which of two options was either more similar to or more different from a standard. On unambiguous trials, one option was unambiguously more similar to the standard, either by virtue of featural similarity or by virtue of relational similarity. On ambiguous trials, one option was more featurally similar (but less relationally similar) to the standard, whereas the other was more relationally similar (but less featurally similar). Given the higher cognitive complexity of assessing relational similarity, we predicted that detecting relational difference would be particularly demanding. We found that participants (1) had more difficulty accurately detecting relational difference than they did relational similarity on unambiguous trials, and (2) tended to emphasize relational information more when judging similarity than when judging difference on ambiguous trials. The latter finding was captured by a computational model of comparison that weights relational information more heavily for similarity than for difference judgments. These results provide convergent evidence for a representational asymmetry between the relations same and different.
Nick Ichien
University of California, Los Angeles
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow