Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailablePhysics of Life

Flocking through complex environments

Suraj Shankar

Dr.

Harvard University

Schedule
Monday, June 7, 2021

Showing your local timezone

Schedule

Sunday, June 6, 2021

5:00 PM America/Los_Angeles

Watch recording
Host: SLAAM by UC Merced

Access Seminar

Meeting Password

223642

Use this password when joining the live session

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Domain

Physics of Life

Original Event

View source

Host

SLAAM by UC Merced

Duration

70 minutes

Abstract

The spontaneous collective motion of self-propelled agents is ubiquitous in the natural world, and it often occurs in complex environments, be it bacteria and cells migrating through polymeric extracellular matrix or animal herds and human crowds navigating structured terrains. Much is known about flocking dynamics in pristine backgrounds, but how do spatio-temporal heterogeneities in the environment impact such collective self-organization? I will present two model systems, a colloidal active fluid negotiating disordered obstacles and a confined dense bacterial suspension in a viscoelastic medium, as controllable platforms to explore this question and highlight general mechanisms for active self-organization in complex environments. By combining theory and experiment, I will show how flocks on disordered substrates organize into a novel dynamic vortex glass phase, akin to vortex glasses in dirty superconductors, while the presence of viscoelasticity can calm the otherwise turbulent swarming of bacteria, allowing the emergence of a large scale coherent and even oscillatory vortex when confined on the millimetre scale.

Topics

active matter theoryactive self-organizationbacterial suspensioncollective motioncolloidal active fluidflocking dynamicsself-propelled agentsspatio-temporal heterogeneitiesviscoelastic mediumvortex glass phase

About the Speaker

Suraj Shankar

Dr.

Harvard University

Contact & Resources

Personal Website

sushanka.expressions.syr.edu

Related Seminars

Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
January 2026
Full calendar →