Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Dr.
Pritzker School of Molecular Engineering, University of Chicago
Showing your local timezone
Schedule
Sunday, August 15, 2021
5:00 PM America/Los_Angeles
Recording provided by the organiser.
Domain
Host
SLAAM by UC Merced
Duration
70 minutes
The motion of passive or active agents in soft materials generates long ranged deformation fields with signatures informed by hydrodynamics and the properties of the soft matter host. These signatures are even more complex when the soft matter host itself is an active material. Measurement of these fields reveals mechanics of the soft materials and hydrodynamics central to understanding self-organization. In this talk, I first introduce a new method based on correlated displacement velocimetry, and use the method to measure flow fields around particles trapped at the interface between immiscible fluids. These flow fields, decomposed into interfacial hydrodynamic multipoles, including force monopole and dipole flows, provide key insights essential to understanding the interface’s mechanical response. I then extend this method to various actomyosin systems to measure local strain fields around myosin molecular motors. I show how active stresses propagate in 2d liquid crystalline structures and in disordered networks that are formed by the actin filaments. In particular, the response functions of contractile and stable gels are characterized. Through similar analysis, I also measure the retrograde flow fields of stress fibers in single cells to understand subcellular mechanochemical systems.
Mehdi Molaei
Dr.
Pritzker School of Molecular Engineering, University of Chicago
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow
neuro