Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
PhD
Icahn School of Medicine at Mount Sinai, New York
Showing your local timezone
Schedule
Wednesday, April 14, 2021
6:00 PM Europe/Berlin
Recording provided by the organiser.
Domain
NeuroscienceHost
BCCN Berlin lectures series
Duration
70 minutes
Dr. Rajan and her lab design neural network models based on experimental data, and reverse-engineer them to figure out how brain circuits function in health and disease. They recently developed a powerful framework for tracing neural paths across multiple brain regions— called Current-Based Decomposition (CURBD). This new approach enables the computation of excitatory and inhibitory input currents that drive a given neuron, aiding in the discovery of how entire populations of neurons behave across multiple interacting brain regions. Dr. Rajan’s team has applied this method to studying the neural underpinnings of behavior. As an example, when CURBD was applied to data gathered from an animal model often used to study depression- and anxiety-like behaviors (i.e., learned helplessness) the underlying biology driving adaptive and maladaptive behaviors in the face of stress was revealed. With this framework Dr. Rajan's team probes for mechanisms at work across brain regions that support both healthy and disease states-- as well as identify key divergences from multiple different nervous systems, including zebrafish, mice, non-human primates, and humans.
Kanaka Rajan
PhD
Icahn School of Medicine at Mount Sinai, New York
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow