Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
UCSB
Showing your local timezone
Schedule
Wednesday, April 28, 2021
4:00 AM America/New_York
Domain
Physics of LifeHost
NYU Soft Matter Seminar
Duration
70 minutes
Nature is replete with extraordinary materials that can grow, move, respond, and adapt. In this talk I will describe our ongoing efforts to develop advanced polymeric materials, inspired by nature. First, I will describe my group’s efforts to develop ultrastiff, ultratough materials inspired by the byssal materials of marine mussels. These adhesive contacts allow mussels to secure themselves to rocks, wood, metals and other surfaces in the harsh conditions of the intertidal zone. By developing a foundational understanding of the structure-mechanics relationships and processing of the natural system, we can design high-performance materials that are extremely strong without compromising extensibility, as well as macroporous materials with tunable toughness and strength. In the second half of the talk, I will describe new efforts to exploit light as a means of remote control and power. By leveraging the phototransduction pathways of highly-absorbing, negatively photochromic molecules, we can drive the motion of amorphous polymeric materials as well as liquid flows. These innovations enable applications in packaging, connective tissue repair, soft robotics, and optofluidics.
Megan Valentine
Prof
UCSB
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow
neuro