World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
University of Iowa, USA
Showing your local timezone
Schedule
Wednesday, December 16, 2020
10:00 AM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Timing Research Forum
Seminar location
No geocoded details are available for this content yet.
In daily life, we consistently make decisions in pursuit of some goal. Many decisions are informed by multiple sources of information. Unfortunately, these sources often provide ambiguous information about what course of action to take. Therefore, determining how the brain integrates information to resolve this ambiguity is key to understanding the neural mechanisms of decision-making. In the domain of time, this topic can be studied by training subjects to predict when a future event will occur based on distinct cues (e.g., tone, light, etc.). If multiple cues are presented simultaneously and their cue-to-event intervals differ (e.g., tone-10s + light-30s), subjects will often expect the event to occur at the average of their intervals. This ‘temporal averaging’ effect is presumably how the timing system resolves ambiguous time-information. The neural mechanisms of temporal averaging are currently unclear. Here, we will propose how temporal averaging could emerge in cortical circuits using a simple modification of a ‘drift-diffusion’ model of timing.
Benjamin De Corte
University of Iowa, USA
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe