Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
Brain Bank
Showing your local timezone
Schedule
Monday, October 19, 2020
4:00 PM Europe/Paris
Domain
NeuroscienceHost
ICM Paris Brain Institute
Duration
70 minutes
We recently analyzed a large cohort of multiple sclerosis (MS) autopsy cases of the Netherlands Brain Bank (NBB) and showed that 57% of the lesion in advanced MS is active (containing activated microglia/macrophages). These active lesions correlated with disease severity and differed between males and female MS patients.1 Already in normal appearing white matter microglia show early signs of demyelination.5 T cells are also frequently present in advanced stages of MS and have a tissue resident memory (Trm) phenotype, are more frequently CD8+ then CD4+, are located perivascular, enriched in active and mixed active/inactive MS lesions and correlated with lesion activity, lesion load and disease severity.2-4 Like Trm cells, B cells are located perivascular and were also enriched in active MS lesions but in lower numbers and a proportion of the MS patients had almost no detectable B cells in the regions analyzed. MS patients with limited presence of B cells had less severe MS, and less active and mixed active /inactive lesions. We conclude that advanced MS is characterize by a high innate and adaptive immune activity which is heterogeneous and relates to the clinical disease course.
Inge Huitinga
Prof
Brain Bank
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow