World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
PhD
Northwestern University
Showing your local timezone
Schedule
Tuesday, June 8, 2021
4:00 PM Europe/Berlin
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
BCCN Berlin lectures series
Seminar location
No geocoded details are available for this content yet.
The ability to simultaneously record the activity from tens to thousands to tens of thousands of neurons has allowed us to analyze the computational role of population activity as opposed to single neuron activity. Recent work on a variety of cortical areas suggests that neural function may be built on the activation of population-wide activity patterns, the neural modes, rather than on the independent modulation of individual neural activity. These neural modes, the dominant covariation patterns within the neural population, define a low dimensional neural manifold that captures most of the variance in the recorded neural activity. We refer to the time-dependent activation of the neural modes as their latent dynamics. As an example, we focus on the ability to execute learned actions in a reliable and stable manner. We hypothesize that the ability to perform a given behavior in a consistent manner requires that the latent dynamics underlying the behavior also be stable. The stable latent dynamics, once identified, allows for the prediction of various behavioral features, using models whose parameters remain fixed throughout long timespans. We posit that latent cortical dynamics within the manifold are the fundamental and stable building blocks underlying consistent behavioral execution.
Sara A. Solla
PhD
Northwestern University
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe