World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Prof
Meta Fair
Showing your local timezone
Schedule
Monday, October 10, 2022
5:00 PM Europe/Paris
Meeting Password
342890
Use this password when joining the live session
Domain
NeuroscienceOriginal Event
View sourceHost
ICM Paris Brain Institute
Duration
70 minutes
How could machines learn as efficiently as humans and animals? How could machines learn to reason and plan? How could machines learn representations of percepts and action plans at multiple levels of abstraction, enabling them to reason, predict, and plan at multiple time horizons? I will propose a possible path towards autonomous intelligent agents, based on a new modular cognitive architecture and a somewhat new self-supervised training paradigm. The centerpiece of the proposed architecture is a configurable predictive world model that allows the agent to plan. Behavior and learning are driven by a set of differentiable intrinsic cost functions. The world model uses a new type of energy-based model architecture called H-JEPA (Hierarchical Joint Embedding Predictive Architecture). H-JEPA learns hierarchical abstract representations of the world that are simultaneously maximally informative and maximally predictable. The corresponding working paper is available here:https://openreview.net/forum?id=BZ5a1r-kVsf
Yann LeCun
Prof
Meta Fair
Contact & Resources