World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
Brown University
Showing your local timezone
Schedule
Monday, September 14, 2020
4:00 PM Canada/Eastern
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
McGill Neuro
Seminar location
No geocoded details are available for this content yet.
Perceptual learning (PL) is defined as long-term performance improvement on a perceptual task as a result of perceptual experience (Sasaki, Nanez& Watanabe, 2011, Nat Rev Neurosci, 2011). We first found that PL occurs for task-irrelevant and subthreshold features and that pairing task-irrelevant features with rewards is the key to form task-irrelevant PL (TIPL) (Watanabe, Nanez & Sasaki, Nature, 2001; Watanabe et al, 2002, Nature Neuroscience; Seitz & Watanabe, Nature, 2003; Seitz, Kim & Watanabe, 2009, Neuron; Shibata et al, 2011, Science). These results suggest that PL occurs as a result of interactions between reinforcement and bottom-up stimulus signals (Seitz & Watanabe, 2005, TICS). On the other hand, fMRI study results indicate that lateral prefrontal cortex fails to detect and thus to suppress subthreshold task-irrelevant signals. This leads to the paradoxical effect that a signal that is below, but close to, one’s discrimination threshold ends up being stronger than suprathreshold signals (Tsushima, Sasaki & Watanabe, 2006, Science). We confirmed this mechanism with the following results: Task-irrelevant learning occurs only when a presented feature is under and close to the threshold with younger individuals (Tsushima et al, 2009, Current Biol), whereas with older individuals who tend to have less inhibitory control task-irrelevant learning occurs with a feature whose signal is much greater than the threshold (Chang et al, 2014, Current Biol). From all of these results, we conclude that attention and reward play important but different roles in PL. I will further discuss different stages and phases in mechanisms of PL (Seitz et al, 2005, PNAS; Yotsumoto, Watanabe & Sasaki, Neuron, 2008; Yotsumoto et al, Curr Biol, 2009; Watanabe & Sasaki, 2015, Ann Rev Psychol; Shibata et al, 2017, Nat Neurosci; Tamaki et al, 2020, Nat Neurosci).
Takeo Watanabe
Dr.
Brown University
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe