World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
Brown University
Showing your local timezone
Schedule
Tuesday, September 15, 2020
6:00 AM Canada/Eastern
Domain
NeuroscienceOriginal Event
View sourceHost
McGill Neuro
Duration
70 minutes
Perceptual learning (PL) is defined as long-term performance improvement on a perceptual task as a result of perceptual experience (Sasaki, Nanez& Watanabe, 2011, Nat Rev Neurosci, 2011). We first found that PL occurs for task-irrelevant and subthreshold features and that pairing task-irrelevant features with rewards is the key to form task-irrelevant PL (TIPL) (Watanabe, Nanez & Sasaki, Nature, 2001; Watanabe et al, 2002, Nature Neuroscience; Seitz & Watanabe, Nature, 2003; Seitz, Kim & Watanabe, 2009, Neuron; Shibata et al, 2011, Science). These results suggest that PL occurs as a result of interactions between reinforcement and bottom-up stimulus signals (Seitz & Watanabe, 2005, TICS). On the other hand, fMRI study results indicate that lateral prefrontal cortex fails to detect and thus to suppress subthreshold task-irrelevant signals. This leads to the paradoxical effect that a signal that is below, but close to, one’s discrimination threshold ends up being stronger than suprathreshold signals (Tsushima, Sasaki & Watanabe, 2006, Science). We confirmed this mechanism with the following results: Task-irrelevant learning occurs only when a presented feature is under and close to the threshold with younger individuals (Tsushima et al, 2009, Current Biol), whereas with older individuals who tend to have less inhibitory control task-irrelevant learning occurs with a feature whose signal is much greater than the threshold (Chang et al, 2014, Current Biol). From all of these results, we conclude that attention and reward play important but different roles in PL. I will further discuss different stages and phases in mechanisms of PL (Seitz et al, 2005, PNAS; Yotsumoto, Watanabe & Sasaki, Neuron, 2008; Yotsumoto et al, Curr Biol, 2009; Watanabe & Sasaki, 2015, Ann Rev Psychol; Shibata et al, 2017, Nat Neurosci; Tamaki et al, 2020, Nat Neurosci).
Takeo Watanabe
Dr.
Brown University
Contact & Resources