Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof.
Washington University in St Louis, Missouri
Showing your local timezone
Schedule
Monday, October 5, 2020
4:00 PM Europe/Lisbon
Domain
NeuroscienceHost
Brain-Body Interactions
Duration
70 minutes
Immune cells and their derived molecules have major impact on brain function. Mice deficient in adaptive immunity have impaired cognitive and social function compared to that of wild-type mice. Importantly, replenishment of the T cell compartment in immune deficient mice restored proper brain function. Despite the robust influence on brain function, T cells are not found within the brain parenchyma, a fact that only adds more mystery into these enigmatic interactions between T cells and the brain. Our results suggest that meningeal space, surrounding the brain, is the site where CNS-associated immune activity takes place. We have recently discovered a presence of meningeal lymphatic vessels that drain CNS molecules and immune cells to the deep cervical lymph nodes. This communication between the CNS and the peripheral immunity is playing a key role in neurophysiology and in several CNS disorders. Interestingly, meningeal lymphatics are impaired in aging and their dysfunction may be related to age-related cognitive decline as well as to Alzheimer’s pathology. In addition to providing new insights into age-related disorders, meningeal lymphatics may also serve as a novel therapeutic target for these diseases and are worth of in-depth mechanistic exploration.
Jonathan Kipnis
Prof.
Washington University in St Louis, Missouri
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow