Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Drs.
Icahn School of Medicine at Mount Sinai
Showing your local timezone
Schedule
Tuesday, December 20, 2022
1:00 AM America/New_York
Recording provided by the organiser.
Domain
NeuroscienceHost
Open Box Science
Duration
70 minutes
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer’s disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches." https://doi.org/10.1016/j.neuron.2022.10.015
Carmen Romero-Molina & Francesca Garretti
Drs.
Icahn School of Medicine at Mount Sinai
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow