Cookies
We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.
Prof
Dartmouth College
Showing your local timezone
Schedule
Tuesday, December 13, 2022
6:00 PM Asia/Tel_Aviv
Domain
NeuroscienceHost
BIU Vision Science
Duration
70 minutes
Information is encoded in fine-scale functional topographies that vary from brain to brain. Hyperalignment models information that is shared across brain in a high-dimensional common information space. Hyperalignment transformations project idiosyncratic individual topographies into the common model information space. These transformations contain topographic basis functions, affording estimates of how shared information in the common model space is instantiated in the idiosyncratic functional topographies of individual brains. This new model of the functional organization of cortex – as multiplexed, overlapping basis functions – captures the idiosyncratic conformations of both coarse-scale topographies, such as retinotopy and category-selectivity, and fine-scale topographies. Hyperalignment also makes it possible to investigate how information that is encoded in fine-scale topographies differs across brains. These individual differences in fine-grained cortical function were not accessible with previous methods.
James Haxby
Prof
Dartmouth College
Contact & Resources
neuro
Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, t
neuro
neuro
Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, follow