World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
University of Cambridge
Showing your local timezone
Schedule
Sunday, July 19, 2020
1:00 PM Europe/Berlin
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
CNS 2020
Seminar location
No geocoded details are available for this content yet.
Synaptic scaling is a homeostatic normalization mechanism that preserves relative synaptic strengths by adjusting them with a common factor. This multiplicative change is believed to be critical, since synaptic strengths are involved in learning and memory retention. Further, this homeostatic process is thought to be crucial for neuronal stability, playing a stabilizing role in otherwise runaway Hebbian plasticity [1-3]. Synaptic scaling requires a mechanism to sense total neuron activity and globally adjust synapses to achieve some activity set-point [4]. This process is relatively slow, which places limits on its ability to stabilize network activity [5]. Here we show that this slow response is inevitable in realistic neuronal morphologies. Furthermore, we reveal that global scaling can in fact be a source of instability unless responsiveness or scaling accuracy are sacrificed." "A neuron with tens of thousands of synapses must regulate its own excitability to compensate for changes in input. The time requirement for global feedback can introduce critical phase lags in a neuron’s response to perturbation. The severity of phase lag increases with neuron size. Further, a more expansive morphology worsens cell responsiveness and scaling accuracy, especially in distal regions of the neuron. Local pools of reserve receptors improve efficiency, potentiation, and scaling, but this comes at a cost. Trafficking large quantities of receptors requires time, exacerbating the phase lag and instability. Local homeostatic feedback mitigates instability, but this too comes at the cost of reducing scaling accuracy." "Realization of the phase lag instability requires a unified model of synaptic scaling, regulation, and transport. We present such a model with global and local feedback in realistic neuron morphologies (Fig. 1). This combined model shows that neurons face a tradeoff between stability, accuracy, and efficiency. Global feedback is required for synaptic scaling but favors either system stability or efficiency. Large receptor pools improve scaling accuracy in large morphologies but worsen both stability and efficiency. Local feedback improves the stability-efficiency tradeoff at the cost of scaling accuracy. This project introduces unexplored constraints on neuron size, morphology, and synaptic scaling that are weakened by an interplay between global and local feedback.
Adriano Bellotti
University of Cambridge
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe