Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

NMC4 Short Talk: The complete connectome of an insect brain

Michael Winding (he/him)

Research Scientist

University of Cambridge

Schedule
Thursday, December 2, 2021

Showing your local timezone

Schedule

Thursday, December 2, 2021

12:00 AM America/New_York

Watch recording
Host: Neuromatch 4

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

Neuromatch 4

Duration

15 minutes

Abstract

Brains must integrate complex sensory information and compare to past events to generate appropriate behavioral responses. The neural circuit basis of these computations is unclear and the underlying structure unknown. Here, we mapped the comprehensive synaptic wiring diagram of the fruit fly larva brain, which contains 3,013 neurons and 544K synaptic sites. It is the most complete insect connectome to date: 1) Both brain hemispheres are reconstructed, allowing investigation of neural pathways that include contralateral axons, which we found in 37% of brain neurons. 2) All sensory neurons and descending neurons are reconstructed, allowing one to follow signals in an uninterrupted chain—from the sensory periphery, through the brain, to motor neurons in the nerve cord. We developed novel computational tools, allowing us to cluster the brain and investigate how information flows through it. We discovered that feedforward pathways from sensory to descending neurons are multilayered and highly multimodal. Robust feedback was observed at almost all levels of the brain, including descending neurons. We investigated how the brain hemispheres communicate with each other and the nerve cord, leading to identification of novel circuit motifs. This work provides the complete blueprint of a brain and a strong foundation to study the structure-function relationship of neural circuits.

Topics

computational modelingcomputational toolsconnectomedescending neuronsfeedbackfly larvafruit flymultimodal pathwaysneural circuitssensory neuronssynaptic wiring

About the Speaker

Michael Winding (he/him)

Research Scientist

University of Cambridge

Contact & Resources

Personal Website

www.zoo.cam.ac.uk/directory/dr-michael-winding

@WindingMichael

Follow on Twitter/X

twitter.com/WindingMichael

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →