World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Graduate Student
Carnegie Mellon University
Showing your local timezone
Schedule
Wednesday, December 1, 2021
6:00 AM America/New_York
Recording provided by the organiser.
Domain
NeuroscienceOriginal Event
View sourceHost
Neuromatch 4
Duration
15 minutes
To better understand human scene understanding, we extracted features from images using CLIP, a neural network model of visual concept trained with supervision from natural language. We then constructed voxelwise encoding models to explain whole brain responses arising from viewing natural images from the Natural Scenes Dataset (NSD) - a large-scale fMRI dataset collected at 7T. Our results reveal that CLIP, as compared to convolution based image classification models such as ResNet or AlexNet, as well as language models such as BERT, gives rise to representations that enable better prediction performance - up to a 0.86 correlation with test data and an r-square of 0.75 - in higher-level visual cortex in humans. Moreover, CLIP representations explain distinctly unique variance in these higher-level visual areas as compared to models trained with only images or text. Control experiments show that the improvement in prediction observed with CLIP is not due to architectural differences (transformer vs. convolution) or to the encoding of image captions per se (vs. single object labels). Together our results indicate that CLIP and, more generally, multimodal models trained jointly on images and text, may serve as better candidate models of representation in human higher-level visual cortex. The bridge between language and vision provided by jointly trained models such as CLIP also opens up new and more semantically-rich ways of interpreting the visual brain.
Aria Wang
Graduate Student
Carnegie Mellon University