Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

NMC4 Short Talk: Predictive coding is a consequence of energy efficiency in recurrent neural networks

Abdullahi Ali

Graduate student

Donders Institute for Brain

Schedule
Thursday, December 2, 2021

Showing your local timezone

Schedule

Thursday, December 2, 2021

7:30 AM America/New_York

Watch recording
Host: Neuromatch 4

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

Neuromatch 4

Duration

15 minutes

Abstract

Predictive coding represents a promising framework for understanding brain function, postulating that the brain continuously inhibits predictable sensory input, ensuring a preferential processing of surprising elements. A central aspect of this view on cortical computation is its hierarchical connectivity, involving recurrent message passing between excitatory bottom-up signals and inhibitory top-down feedback. Here we use computational modelling to demonstrate that such architectural hard-wiring is not necessary. Rather, predictive coding is shown to emerge as a consequence of energy efficiency, a fundamental requirement of neural processing. When training recurrent neural networks to minimise their energy consumption while operating in predictive environments, the networks self-organise into prediction and error units with appropriate inhibitory and excitatory interconnections and learn to inhibit predictable sensory input. We demonstrate that prediction units can reliably be identified through biases in their median preactivation, pointing towards a fundamental property of prediction units in the predictive coding framework. Moving beyond the view of purely top-down driven predictions, we demonstrate via virtual lesioning experiments that networks perform predictions on two timescales: fast lateral predictions among sensory units and slower prediction cycles that integrate evidence over time. Our results, which replicate across two separate data sets, suggest that predictive coding can be interpreted as a natural consequence of energy efficiency. More generally, they raise the question which other computational principles of brain function can be understood as a result of physical constraints posed by the brain, opening up a new area of bio-inspired, machine learning-powered neuroscience research.

Topics

RNNcomputational modelingenergy efficiencyexcitatory signalsinhibitory feedbackprediction unitspredictive codingrecurrent neural networkssensory inputvirtual lesioning

About the Speaker

Abdullahi Ali

Graduate student

Donders Institute for Brain

Contact & Resources

Personal Website

scholar.google.com/citations

@hellothere_ali

Follow on Twitter/X

twitter.com/hellothere_ali

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →