Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

NMC4 Short Talk: What can 140,000 Reaches Tell Us About Demographic Contributions to Visuomotor Adaptation?

Hrach Asmerian

Undergraduate student

University of California, Berkeley

Schedule
Thursday, December 2, 2021

Showing your local timezone

Schedule

Thursday, December 2, 2021

7:00 AM America/New_York

Watch recording
Host: Neuromatch 4

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

Neuromatch 4

Duration

15 minutes

Abstract

Motor learning is typically assessed in the lab, affording a high degree of control over the task environment. However, this level of control often comes at the cost of smaller sample sizes and a homogenous pool of participants (e.g. college students). To address this, we have designed a web-based motor learning experiment, making it possible to reach a larger, more diverse set of participants. As a proof-of-concept, we collected 1,581 participants completing a visuomotor rotation task, where participants controlled a visual cursor on the screen with their mouse and trackpad. Motor learning was indexed by how fast participants were able to compensate for a 45° rotation imposed between the cursor and their actual movement. Using a cross-validated LASSO regression, we found that motor learning varied significantly with the participant’s age and sex, and also strongly correlated with the location of the target, visual acuity, and satisfaction with the experiment. In contrast, participants' mouse and browser type were features eliminated by the model, indicating that motor performance was not influenced by variations in computer hardware and software. Together, this proof-of-concept study demonstrates how large datasets can generate important insights into the factors underlying motor learning.

Topics

LASSO regressioncursor controldemographic contributionshumansmotor learningparticipant ageparticipant sexvisual acuityvisuomotor adaptationweb-based experiment

About the Speaker

Hrach Asmerian

Undergraduate student

University of California, Berkeley

Contact & Resources

Personal Website

ivrylab.berkeley.edu/hrach-asmerian.html

@itsnowforever

Follow on Twitter/X

twitter.com/itsnowforever

Related Seminars

Seminar60%

Knight ADRC Seminar

neuro

Jan 20, 2025
Washington University in St. Louis, Neurology
Seminar60%

TBD

neuro

Jan 20, 2025
King's College London
Seminar60%

Guiding Visual Attention in Dynamic Scenes

neuro

Jan 20, 2025
Haifa U
January 2026
Full calendar →