World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Undergraduate student
University of California, Berkeley
Showing your local timezone
Schedule
Wednesday, December 1, 2021
6:00 PM America/New_York
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Neuromatch 4
Seminar location
No geocoded details are available for this content yet.
Motor learning is typically assessed in the lab, affording a high degree of control over the task environment. However, this level of control often comes at the cost of smaller sample sizes and a homogenous pool of participants (e.g. college students). To address this, we have designed a web-based motor learning experiment, making it possible to reach a larger, more diverse set of participants. As a proof-of-concept, we collected 1,581 participants completing a visuomotor rotation task, where participants controlled a visual cursor on the screen with their mouse and trackpad. Motor learning was indexed by how fast participants were able to compensate for a 45° rotation imposed between the cursor and their actual movement. Using a cross-validated LASSO regression, we found that motor learning varied significantly with the participant’s age and sex, and also strongly correlated with the location of the target, visual acuity, and satisfaction with the experiment. In contrast, participants' mouse and browser type were features eliminated by the model, indicating that motor performance was not influenced by variations in computer hardware and software. Together, this proof-of-concept study demonstrates how large datasets can generate important insights into the factors underlying motor learning.
Hrach Asmerian
Undergraduate student
University of California, Berkeley
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe